
Robot Perception and Control
Tutorial

Last updated: Jul / 25 /2024
Kashu Yamazaki

kyamazak@andrew.cmu.edu

mailto:kyamazak@andrew.cmu.edu

Docker

Virtual Machine vs Containers

A Virtual Machine (VM) virtualizes the underlying hardware by means of a hypervisor, while it provides
operating-system-level virtualization. Containers are more lightweight than VMs, as they are not emulating
hardware.

Kashu Yamazaki, 2024 3 1 6

Why Docker?

There are several merits of using Docker.

We can share the environment
You can share the Docker Image to help others setup and run your code.

No more repeated setup process on every different machine!
We can improve reproducibility.

The code works even after several years on the Image.

No more suffering from messing up your environment after installing some software updates.

 Note for Mac and Windows

Docker uses the Linux kernel to manage resources between containers; Docker has to run in a Linux virtual machine
for Mac and Windows, which makes some feature fail on Mac and Windows.
Also the chip architecture needs to be considered (M1 and M2): some has to cross compile docker buildx build

Kashu Yamazaki, 2024 4 1 6

Structure of Docker Environment

Image: a template that contains middleware settings or commands needed to launch a container.

Container: a virtual environment created based on a Docker Image where web servers, PyTorch
environment, ... run.

Registry: Docker Hub is the place where the Images are published and shared.

Kashu Yamazaki, 2024 5 1 6

Managing Images and Containers
List Images: docker images

Remove an Image: docker rmi <imageID>

Prune an Image: docker image prune

Get an Image: docker pull

Build an Image: docker build -t <imageName> -f Dockerfile .

List Containers: docker ps -a

Remove a Container: docker rm <containerID>

Start a Container: docker run <imageName>

Attach to a running Shell: docker exec -it <containerID>

bash

With docker images command, you can check <imageName> and <imageID>.

Kashu Yamazaki, 2024 6  1 6

Getting your own Image

You can write a Dockerfile to create your own image:

Specify the base image: you can explore docker hub.
FROM pytorch/pytorch:2.0.1-cuda11.7-cudnn8-runtime
Install dependencies and command-line tools.
RUN apt-get update && apt-get install -y build-essential cmake git wget
Set the working directory.
WORKDIR /workspace
ENV HOME /workspace
Pip install python packages.
RUN pip install timm opencv-python

Then: docker build -t <imageName> -f /path/to/Dockerfile . to build the image.
You can also publish your image on DockerHub by: docker login && docker push <imageName>

Kashu Yamazaki, 2024 7 1 6

Running Containers

Docker run Options

--rm remove the container after it exits

--gpus for GPU isolation

-i -t or -it interactive, and connect a "tty"

-p 5004:8888 map port 8888 on the host to 5004 inside the container

-v ~/data:/data map storage volume from host to container (bind mount) i.e. bind the ~/data directory in your
home directory to /data in the container

Starts TensorFlow with ports, volumes, console, and comment (All 1 line):

docker run --rm -it --gpus all -p 5004:8888 -v ~/data:/data <imageName>

Kashu Yamazaki, 2024 8 1 6

Running GUI Applications with Docker

1. Allow local X11 connections

xhost local:root

2. Run docker with options

Intel GPU

docker run --device=/dev/dri:/dev/dri -v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY

NVIDIA GPU

docker run --gpus 'all,"capabilities=compute,utility,graphics"' -v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY

Kashu Yamazaki, 2024 9  1 6

PyTorch

Computational Graph
Two elements of computational
graph: valuable (blue) and operator (green).

import numpy as np

B, C = 3, 4
x = np.random.randn(B,C)
y = np.random.randn(B,C)
z = np.random.randn(B,C)

forward pass
a = x * y
b = a + z
c = np.sum(b)

backward pass (gradient computation)
grad_c = np.ones((1))
grad_b = np.tile(grad_c, b.shape)
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a * y
grad_y = grad_a * x

import torch

B, C = 3, 4
x = torch.randn(B,C, requires_grad=True)
y = torch.randn(B,C, requires_grad=True)
z = torch.randn(B,C, requires_grad=True)

forward pass
a = x * y
b = a + z
c = b.sum()

backward pass (gradient computation)
c.backward()

PyTorch implements computational
graph with: tensor and function,
which comes with AD for easy
gradient computation.Kashu Yamazaki, 2024 1 1 1 6

Tensors

Kashu Yamazaki, 2024 1 2 1 6

Devices
CUDA and CPU

device = "cuda" if torch.cuda.is_available() else "cpu"

move the array to a device
torch_arr = torch_arr.to(device)
print(torch_arr.device)

move to cuda
torch_arr = torch_arr.to("cuda")
torch_arr = torch_arr.to("cuda:0") # GPU at idx 0
torch_arr = torch_arr.cuda()

move to cpu
torch_arr = torch_arr.to("cpu")
torch_arr = torch_arr.cpu()

NumPy Array to Torch Tensor (CPU)

Numpy to Torch
torch_arr = torch.from_numpy(np_arr) # cpu tensor

Torch to Numpy
np_arr = torch_arr.cpu().numpy() # first move to cpu

Type Checking

type(torch_arr.cuda())
torch.cuda.FloatTensor
type(torch_arr.cpu())
torch.cpu.FloatTensor
type(np_arr)
numpy.ndarray

Kashu Yamazaki, 2024 1 3 1 6

Gradients

Kashu Yamazaki, 2024 1 4 1 6

Optimizers and Loss functions

Kashu Yamazaki, 2024 1 5 1 6

nn.Module docs 

A neural network model and its components can be represented by a nn.Module class.

class MLP(nn.Module):
 def __init__(self,):
 super().__init__() # you have to call this in all child class!
 self.layer1 = nn.Linear(764, 100) # nn.Linear also inherits nn.Module and implements Linear layer (y = w*x + b)
 self.layer2 = nn.Linear(100, 10)

 def forward(self, x): # forward is called in __call__() so that you can run the forward pass just by module(x)
 return self.layer2(F.relu(self.layer(x)))

__init__: defines the parts that make up the model (sub-module or parameters)

forward: performs the actual forward computation

PyTorch pre-defines common modules of the modern deep neural networks. See more at basic building blocks 

Kashu Yamazaki, 2024 1 6  1 6

https://pytorch.org/docs/stable/notes/modules.html
https://pytorch.org/docs/stable/nn.html

