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Kinematics



Kinematics

Kinematics: study of a motion of the robot without considering the forces and torques producing the motion.
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Denavit-Hartenberg convention

Jointji4+1q
oy

The following four transformation parameters are known as

D-H parameters:

a;: distance from z; 1 to z; along x;.

a;: angle from z;_; to z; about z;.

d;: distance from z; 1 to z; along z;.

0,: angle from x; ;1 to x; about z;.

Usually, a; and «; are constants that describe the geometry

of the robot, while d; and 6; are the variables that describe

the motion of prismatic and revolute joints, respectively.
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Denavit-Hartenberg convention

In this convention, coordinate frames are attached to the joints between two links such that one transformation

is associated with the joint [Z], and the second is associated with the link [X]. The coordinate transformations

[T'] along a serial robot consisting of n links form the kinematics equations of the robot as:

where each transformation [Z][X] can be implemented as a 4 x 4 matrix using the DH parameters as:

7] = [Z1][X1][22][Xa]- - - [Zn] [ Xn]

-

def transform(a, alpha, d, theta):
return Rot(theta, axis="7") @ Trans(d, axis=

) @ Trans(a, axis=

) @ Rot(alpha, axis=

)
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Forward Kinematics

Forward kinematics is the problem of finding the end-effector position and orientation z(¢) of a robot

manipulator given the joint angles 6(¢) and link lengths.
z(t) = £(0(¢))
We can use the DH parameters of a robot to simply represent the forward kinematics as a chain of

transformations starting from a base link, which connects to the origin.

s

def fk(theta):
trans = np.identity(4)
for (_a, _alpha, _d, _theta) in dh_params(theta):
trans = trans @ transform(_a, _alpha, _d, _theta)
return trans
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Forward Kinematics

: . : . [cos(f;) —sin(f1) 0 —Ljcos(6y)]
Let's consider the right front leg The DH parameters of the leg: o [sm(®)  cos(6) 0 ~Lisin(éy)
joints (coordinate systems below): 71 o 0 1 0

Link a o d 0 0 0 0 1
0-1 L, 0 0 6 0 -100
T2 _ -1 0 0 O
1-2 0 —7'('/2 0 —7T/2 1 = 0 0 1 0
23 Ly 0 0 6, 0 0 0 1
[cos(f3) —sin(f3) 0 Lycos(6s)
34 Ly 0 0 06 o |sin0)  cos(@) 0 Lysin(0y)
From the table, we can construct 2 8 g (1) (1)
the each transformation 7' and the ] (9 0 0 Lscos(d )'
cos(0s — sin (03 3 COS\U3
forward kinematics is given by the 5 sin(f3) cos(fs) O Lysin(6s)
chain of those transformations as 0 0 1 0
0 0 0 1

TS, - :
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Inverse Kinematics

Inverse kinematics (IK) is essentially the reverse operation of FK: computing configuration(s) to reach a desired
workspace coordinate. Unlike forward kinematics, inverse kinematics cannot be solved in a closed-form

expression (in general). If we can derive a closed-form expression through symbolic manipulations, we can use

Analytical IK, otherwise we need to use numerical approach.

Analytical IK

e Once the equations are derived, solutions are very fast to compute.

o Often difficult or tedious to derive.

e Only applicable to non-redundant robots (# DOFs = # of task space dimensions).

Numerical IK

e need to define solution parameters or initial guesses

e More generalizable
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Analytical Inverse Kinematics

Let's consider a 2D arm in 2D space as in the Figure.

From law of cosines:
@ty — LI L3
2L1Lo

cos(m — 63) =

Assuming solution exists (—1 < RHS < 1),

332 + y2 o L2 L LZ
9, — + —1 2 2 1 2
9 COS ( 2L1L2

e Note that elbow down and elbow up solutions (=) exist.

Then using the 65, we can find a 6, as:

01 = atan 2(ys, x3) — atan2(Ls sin 0y, L1 + Ly cos 6s)
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Analytical Inverse Kinematics

Given the foot position (z4,y4, 24), the joint positions 61,6-,603 for a

typical quadruped leg is given as in papers :

61 = —atan 2(—y4, z4) — atan 2 (\/wi +y3: — L7, —Ll)

6, = atan 2 (24, T2+ Y5 — L%) — atan2 (Lgsin(f3), L + L3 cos(0s3))

05 — atan 2 (i\/l — D2,D)

where

i +ys+2— L1 — Ly — L
2L L3

D =

o the & sign in 63 determines the knee direction if the quadruped.
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https://www.ijstr.org/final-print/sep2017/Inverse-Kinematic-Analysis-Of-A-Quadruped-Robot.pdf

Jacobian

The Jacobian matrix is a matrix of partial derivatives that describes how the robot's configuration affects the

robot's end-effector position. The Jacobian matrix is defined as:

_ 0=
~ 0

where z is the end-effector position and € is the joint angles.

J

If we consider the differentiation w. r. t. time, we can write the relationship between & (or v) and 6.
i = J(6)0
0=J 10z
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Basic Jacobian
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Numerical Inverse Kinematics

Given an initial guess §° that is close to a solution 6,4, the kinematics can be expressed as the Taylor expansion:

rq = f(gd) = f(go) + % (9d — 90) + h.o.t.
0
= 1(6°) + J(6°) A0 + h.o.t.

where J(6°) is the coordinate Jacobian at §°.
By truncating the Taylor expansion at first order, we can obtain the approximation as:

J(0°)AO = z4 — £(0")
Assuming that J(6°) is square and invertible, we can solve for A# as:
A9 =T (0")(za — £(6°))
o In practice, pseudo-inverse of a Jacobian J* is used and we do not need to assume square and invertible.
We will iteratively update the guess until it converges to a solution.
6" «—— 6' + nAb
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