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What can we do with RL X Legged Robots?
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Actuator Networks axivs

Actuators are extremely difficult to model accurately.

e nonlinear and non-smooth dissipation in dynamics.

 contains cascaded feedback loops and a number of 0 ..

rigid body modeling

internal states that are not even directly observable.

Actuator Networks is a data driven solution that can

provide better simulation of an actuator via supervised

Train actuator net
with real data

learning.
Fig. 1. Creating a control policy. In the first step, we identify the physical parameters of the robot and estimate uncertainties in the
identification. In the second step, we train an actuator net that models complex actuator/ software dynamics. In the third step, we
. . . . train a control policy using the models produced in the first two steps. In the fourth step, we deploy the trained policy directly on
e learns action-to-torque relationship that includes the physical sysem.

all software and hardware dynamics. - . .
66 collect joint position errors, velocities, and torque

* actuator network estimated torque at the joints given using a controller for more than a million samples with

a history of position errors and velocities. varied amplitude and frequency and manual

disturbances for diverse situation.
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https://arxiv.org/abs/1901.08652

Learning

by Cheating arxiv s github 2

Proposed two-stage training procedure, which first train a privileged agent and then using the agent as a teacher

to train a purely vision-based system, for effective imitation learning. This paradigm is the underlying concept

in the legged RL.
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(a) Privileged agent imitates the expert (b) Sensorimotor agent imitates the privileged agent

Figure 1: Overview of our approach. (a) An agent with access to privileged information learns
to imitate expert demonstrations. This agent learns a robust policy by cheating. It does not need to
learn to see because it gets direct access to the environment’s state. (b) A sensorimotor agent without
access to privileged information then learns to imitate the privileged agent. The privileged agent is a
“white box™ and can provide high-capacity on-policy supervision. The resulting sensorimotor agent

does not cheat.


https://arxiv.org/abs/1912.12294
https://github.com/dotchen/LearningByCheating

Learning Locomotion over Challenging Terrain arxivs github s
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https://arxiv.org/abs/2010.11251
https://github.com/leggedrobotics/learning_quadrupedal_locomotion_over_challenging_terrain_supplementary

RMA: Rapid Motor Adaptation papers
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https://ashish-kmr.github.io/rma-legged-robots/rma-locomotion-final.pdf

Learning to Walk in Minutes arvixs github s

Presents a training setup that achieves fast policy generation for real-world robotic tasks by using massive

parallelism on a single workstation GPU (showcase of Isaac Gym).

e A codebase is widely used as baseline for developing legged locomotion system.
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https://arxiv.org/abs/2109.11978
https://github.com/leggedrobotics/legged_gym

Walk These Ways arxivs
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https://arxiv.org/abs/2212.03238

Perceptive locomotion



Perceptive locomotion for quadrupeds

Presented a three stage training and deploy method to perform zero-shot sim-to-real transfer [ 1 1 ].

1. a teacher policy, which has access to privileged information, is trained to follow a random target velocity

over randomly generated terrain with random disturbances.

2.a student policy is trained to reproduce the teacher policy’s actions without using this privileged
information.

3. transfer the learned student policy to the physical robot and deploy it in the real world with onboard sensors.
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https://arxiv.org/pdf/2201.08117.pdf

Training teacher policy

1. Teacher policy training
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Training student policy

2. Student policy training
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Deployment

3. Deployment
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Legged Locomotion using Egocentric Vision

Upstairs
17cm high, 30cm deep
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Downstairs
17cm high, 30cm deep

Stepping Stones

30cm wide, 15cm apart

arxiv 2

Gaps

26cm apart

Success | #Stairs Success | #Stairs Success | #Stones Success
Ours 100% 13 Ours 100% 13 Ours 94% 9.4 Ours 100%
Blind 0% 2.2 Blind 100% 13 Blind 0% 0 Blind 0%
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https://arxiv.org/abs/2211.07638

Parkour Learning arxivs
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https://arxiv.org/abs/2309.05665

Extreme Parkour arxivs
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https://arxiv.org/abs/2309.14341

Humanoid Parkour Learning arxivs
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https://arxiv.org/abs/2406.10759v1

