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From Transformers to Foundation Models
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Fig. 1. A timeline of existing large language models (having a size larger than 10B) in recent years. We mark the open-source LLMs in yellow color.
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SayCan (1/3)

With prompt engineering and scoring we can use LLM to break down an instruction into small, actionable
steps. However, the LLLM doesn't know about the scene, embodiment and the situation it's in. It needs

what is call an affordance function!

e A robotic value functions as a way to provide what's feasible in the world given the current scene and
embodiment.

e« LLM checks what makes sense to do next given the grand plan, and the value function checks what is
currently feasible
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SayCan (2/3)

SayCan [12] obtains a skill that is both
possible and useful with LLMs by:

 asking the LLM to interpret an instruction
and score the likelihood that an individual
skill makes progress towards completing the
high-level instruction.

e a value function that represents the
probability of successfully executing said
skill to select the skill to perform
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Instruction Relevance with LLMs
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https://say-can.github.io/

SayCan (3/3)

Human: | spilled
my coke, can you
bring me
something to clean
it up?

Robot: | would
1. Find a sponge
2. Pick up the
sponge

3. Bring it to you
4. Done

Language x Affordance
: Combined Score
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PaLM-SayCan

Just by changing the LLM to a more performant PaLM we
got:

e better performance
e chain-of-thought prompting

 handling of queries in other languages
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Planning Performance
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Inner Monologue (1/3)

Inner Monologue [1#] bring in VLMs to
provide feedback about the scene, task success

etc.
All these different models talk to each other in

natural language so that LLM can understand.

66 VLMs bring a lot of non-robotic data into
our system allowing us to get better planning

feedback mechanisms.
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Robot Planning & Interaction
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@ Can you brin

g me the drink from the table?

Robot

Action: "go to table” @

Robot
Do you want water or coke? @

Rabot
Action: "pick up the coke” @

Robaot

Action: "pick up the coke” @

Raobot
Action: "bring it to you® @

Grounded Closed-Loop Feedback

Robot

Zoene Desoriptor @ — Success Detector
& @
@

Human

Scens Descripbor

' .
@ | see: coke, water, chocolate bar.

e

Swccess Detector
@ Action was not successful.
Success Detector

m
@ Action was successful.

Robot Environments



https://innermonologue.github.io/

Inner Monologue (2/3)

e Success Detection gives task-specific task completion information.
» Passive Scene Description gives structured semantic scene information at every planning step.

e Active Scene Description gives unstructured semantic information only when queried by the LLM
planner.

Success Detection in context Paszive Scena Description in context: Active Scene Description in context:
Robot Action: Pick up coke Robot Action: Go to table Robot Action: Go to drawers
Success: True Scene: lime soda, coke, anargy bar Robot Ask: Is the drawer open?
Robot Action: Bring it to user Robot Action: pick up energy bar Human: The drawer is closed.

Robot Action: Open the drawer
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Inner Monologue (3/3)
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Hurman: move all the blocks into mismatching bowls.
Scane: Thera is a yellow block, yellow bowl, blue
block, blue bowd, red block, red bowl.

Robot: My goal is [yellow block in blue bow!', ‘red
block in yellow bowl, ‘blue block in red bowl].
Robot: Pick up vellow block and place it in blue bowl.
Scene: You achieved ['yvellow block in blua bowl’
Robot: | need red block in yellow bowd, blue block in
red bowl

Robot: Pick up red block and place it in yellow bowl.

Tabletop
Rearrangement (Sim)

Human: Sort fruits and condiments in different plates
Scene: objects = [apple, egg. plum, pizza, cookie, salt,
mustard, ketchup, lemon]

Scene: occluded objects = (]

Robot: robot.pickplace({strawberry, green plate)
Robot: robot.pickplace{salt shaker, blue plate)
Success Detector: False.

Robot: robot.pickplace(salt shaker, blue plate)

Tabletop
Rearrangement (Real)

Robot: robot.stopl)

Hurman: Bring me a drink from the table
Robot: go to the table

Scene: | see a coke and lime soda
Robot: What kind of drink would you like?
Hurnan: Something with caffeine
Robot: Pick up coke

Success Detector: False

Robot: Pick up coke

Robot: Bring it to you

Robot: Put down the coke

Robot: Done

Kitchen Mobile
Manipulation (Real)
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Code as Policies

Code as Policies [ 1 1 ] used LLMs to generate code to directly control the robot.
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User

Large <=---  Stack the blocks on the empty bowl. (8)
Language =

Model APls
Control APIs
[Ex|

l Policy Code

block_names = detect_objects("blocks")
bowl_names = detect_objects("bowls")
for bowl_name in bowl_names:
if is_empty(bowl_name):

empty_bowl = bowl_name

break
objs_to_stack = [empty_bowl] |+ block_names
stack_objects(objs_to_stack)

l def is_empty(name):

def stack_objects(obj_names):
n_objs = len(obj_names) ;
for i in range(n_objs - 1): =
obj_names[i + 1]
obj_names[i]
(obj@, obj1)


https://code-as-policies.github.io/

DIAL

DAIL [ 1 1 ] show that VLMs can significantly expand language labels without collecting any additional robot

data.
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Step 1: Learn Scoring Model
Collect natural language description
for a small dataset and fine-tune a
VLM (e.g. CLIP)
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Step 3: Train

Train a language conditioned
policy using behavior cloning
with original and relabeled
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https://instructionaugmentation.github.io/

NLMap (1/4)

NLMap [ 1 1] showed VLMs can be used to query objects in the scene and allow for open-vocabulary queries

in SayCan. NLMap addresses two core problems:

1. How to maintain open-vocabulary scene representations that are capable of locating arbitrary objects?

2. How to merge such representations within long-horizon LLM planners to imbue them with scene
understanding?

Region Proposal + VLM Feature Open-vocabulary
+ Multiview Fusion Queryable Representation

Scene Exploration

“trash can”
T

“recycle bin”

“coke” “plant” =
“red can” “potted plant” |
“green plant” m
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http://nlmap-saycan.github.io/

“Recycle the coke can”

NLMap (2/4)

“coke can®, "recycle bin”
NLMap builds a natural language queryable

“coke can” found at(x1, y1)
“recycle bin” found at (x2, y2)

scene representation with VLMs. An LLM-

based object proposal module infers involved
“go to coke can”, “pick up coke can”,
“put down coke can”, ....

objects to query the representation for object

find the cole can

Eeck i He colon car

availability and location. LLM planner

Scene: coke can, recycle bin

Robot: | should N | B

111 1. find the coke can P
(SayCan) then plans conditioned on such ke "
information. T Bap e Y T —

300

4. put down coke can
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NLMap (3/4)

Natural Language Queryable Scene Representation:

1. The agent explores the scene and provides a class-agnostic bounding box proposal based on objectness.

2. Extract 512d CLIP features and 512d ViLD features of each bounding box and represent them as a feature
point cloud C = (¢;,Di,7:);—1_n-

3. When queried with a piece of text, visualize the heatmap of matches based on the alignment of text and
visual features.

Context elements{( Diy Pis Ty ) Query: napkin box Query: tap Query: apple Query: fruit

=== S
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NLMap (4/4)

To complete a task specified by human instruction, the
robot will query the scene representation for relevant

information.

1. parsing natural language instruction into a list of
relevant object names

2. using the names as keys to query object locations
and availability.

3. generating executable options based on what’s
found in the scene, then plan and execute as
instructed.
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Input: instruction
if is_new_scene():
# construct queryable scene representation
rgbd_images = robot.scene_explore()
bboxes = roi_proposal (rgbd_images)
positions, sizes = extract_3d(rgbd_images, bboxes)
phi = VIM.encode_ image (rgbd_images, bboxes)
nl_map = Context (phi, positicns, sizes)
save_nl _map (nl_map)
else:
nl_map = load_nl map()
# extract relevant objects wvia LLM
objects = LIM.object_proposal (instruction)
# extract text features
queries = VLM.encode_text (obhjects)
# query the nl map
object_scores = queries.dot_product (nl _map.Phi)
object_presence, locations
= multiview fusion(object_scores, nl_map)
scene_obijects = objects.filter by (ockbject_presence)
# planning with scene obijects information
LIM.plan{instruction, scene_objects)




CLIP-Nav (1/3)

CLIP-Nav [ 1 1] examines CLIP’s capability in making sequential navigational decisions, and study how it

influences the path that an agent takes.

1. Instruction Breakdown: Decompose coarse-grained instructions into keyphrases using LL.Ms.
2. Vision-Language Grounding: Ground keyphrases in the environment using CLIP.

3. Zero-Shot Navigation: Utilize the CLIP scores to make navigational decisions.
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https://arxiv.org/pdf/2211.16649.pdf

CLIP-Nav (2/3)

CLIP-chosen image

Navigational |
Component (NC) : Activity Component (AC)
“Go to the > Keyphrase Grounding “Spoon next to
kitchen” m Score (KGS) { | the microwave” > Stop Condition
|

e Ground the NC on all the split images to obtain Keyphrase Grounding Scores (KGS). The CLIP-chosen image
represents the one with the highest KGS, which drives the navigation algorithms.

e Ground the AC and use the grounding score to determine if the agent has reached the target location (stop

condition).
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CLIP-Nav (3/3)

At e ach time step: Current r\::avrgat:onaf Compo:aent (NC) ) Activity Component (AC) )
Go to the bedroom replace towels on the towel rack

1. split the panorama into 4 images, and obtain the Current
CLIP-chosen image

2. obtain adjacent navigable nodes visible from this
image using the Matterport Simulator, and choose

Navigable
¥ Nodes

the closest node.

Next
This is done iteratively till the Stop Condition is reached. Node
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