
Robot Perception and Control
LLM for Robotics

Last updated: Jul / 25 /2024
Kashu Yamazaki

kyamazak@andrew.cmu.edu

mailto:kyamazak@andrew.cmu.edu

From Transformers to Foundation Models

Kashu Yamazaki, 2024 2 1 8

SayCan (1/3)

With prompt engineering and scoring we can use LLM to break down an instruction into small, actionable
steps. However, the LLM doesn't know about the scene, embodiment and the situation it's in. It needs
what is call an affordance function!

A robotic value functions as a way to provide what's feasible in the world given the current scene and
embodiment.

LLM checks what makes sense to do next given the grand plan, and the value function checks what is
currently feasible

Kashu Yamazaki, 2024 3 1 8

SayCan (2/3)

SayCan [1] obtains a skill that is both
possible and useful with LLMs by:

asking the LLM to interpret an instruction
and score the likelihood that an individual
skill makes progress towards completing the
high-level instruction.

a value function that represents the
probability of successfully executing said
skill to select the skill to perform

Kashu Yamazaki, 2024 4 1 8

https://say-can.github.io/

SayCan (3/3)

Kashu Yamazaki, 2024 5 1 8

PaLM-SayCan

Just by changing the LLM to a more performant PaLM we
got:

better performance

chain-of-thought prompting

handling of queries in other languages

Kashu Yamazaki, 2024 6  1 8

Inner Monologue (1/3)

Inner Monologue [1] bring in VLMs to
provide feedback about the scene, task success
etc.
All these different models talk to each other in
natural language so that LLM can understand.

 VLMs bring a lot of non-robotic data into
our system allowing us to get better planning
feedback mechanisms.

Kashu Yamazaki, 2024 7 1 8

https://innermonologue.github.io/

Inner Monologue (2/3)
Success Detection gives task-specific task completion information.

Passive Scene Description gives structured semantic scene information at every planning step.

Active Scene Description gives unstructured semantic information only when queried by the LLM
planner.

Kashu Yamazaki, 2024 8 1 8

Inner Monologue (3/3)

Kashu Yamazaki, 2024 9  1 8

Code as Policies

Code as Policies [1 ] used LLMs to generate code to directly control the robot.

Kashu Yamazaki, 2024 1 0  1 8

https://code-as-policies.github.io/

DIAL

DAIL [1 ] show that VLMs can significantly expand language labels without collecting any additional robot
data.

Kashu Yamazaki, 2024 1 1 1 8

https://instructionaugmentation.github.io/

NLMap (1/4)

NLMap [1 ] showed VLMs can be used to query objects in the scene and allow for open-vocabulary queries
in SayCan. NLMap addresses two core problems:

1. How to maintain open-vocabulary scene representations that are capable of locating arbitrary objects?

2. How to merge such representations within long-horizon LLM planners to imbue them with scene
understanding?

Kashu Yamazaki, 2024 1 2 1 8

http://nlmap-saycan.github.io/

NLMap (2/4)

NLMap builds a natural language queryable
scene representation with VLMs. An LLM-
based object proposal module infers involved
objects to query the representation for object
availability and location. LLM planner
(SayCan) then plans conditioned on such
information.

Kashu Yamazaki, 2024 1 3 1 8

NLMap (3/4)

Natural Language Queryable Scene Representation:

1. The agent explores the scene and provides a class-agnostic bounding box proposal based on objectness.

2. Extract 512d CLIP features and 512d ViLD features of each bounding box and represent them as a feature
point cloud .

3. When queried with a piece of text, visualize the heatmap of matches based on the alignment of text and
visual features.

Kashu Yamazaki, 2024 1 4 1 8

NLMap (4/4)
To complete a task specified by human instruction, the
robot will query the scene representation for relevant
information.

1. parsing natural language instruction into a list of
relevant object names

2. using the names as keys to query object locations
and availability.

3. generating executable options based on what’s
found in the scene, then plan and execute as
instructed.

Kashu Yamazaki, 2024 1 5 1 8

CLIP-Nav (1/3)

CLIP-Nav [1 ] examines CLIP’s capability in making sequential navigational decisions, and study how it
influences the path that an agent takes.

1. Instruction Breakdown: Decompose coarse-grained instructions into keyphrases using LLMs.

2. Vision-Language Grounding: Ground keyphrases in the environment using CLIP.

3. Zero-Shot Navigation: Utilize the CLIP scores to make navigational decisions.

Kashu Yamazaki, 2024 1 6  1 8

https://arxiv.org/pdf/2211.16649.pdf

CLIP-Nav (2/3)

Ground the NC on all the split images to obtain Keyphrase Grounding Scores (KGS). The CLIP-chosen image
represents the one with the highest KGS, which drives the navigation algorithms.

Ground the AC and use the grounding score to determine if the agent has reached the target location (stop
condition).

Kashu Yamazaki, 2024 1 7 1 8

CLIP-Nav (3/3)
At each time step:

1. split the panorama into 4 images, and obtain the
CLIP-chosen image

2. obtain adjacent navigable nodes visible from this
image using the Matterport Simulator, and choose
the closest node.

This is done iteratively till the Stop Condition is reached.

Kashu Yamazaki, 2024 1 8 1 8

