Robot Perception and Control

LLM for Robotics

Last updated: Jul / 25 /2024
Kashu Yamazaki

kyamazak@andrew.cmu.edu

mailto:kyamazak@andrew.cmu.edu

From Transformers to Foundation Models

e ~
I T8 {5 Gshara «J mT5 Open-Source
2019 — 509 L_ Y2 Pancua A ,
/ 2021 __ / - labs Jurassic-1
orrs @ 1-4 ~o_ 6'2 PLUG MEs" HyperCLOVA
- 0 c_Q
Ernie 3.0 %2®)6 - 5 LaMDA
4 \9 o & FLan ~
BLOOM O -10 — 3AAI CPM-2
EiRTHFR
Codex @ MT—_\'LG=. / \ nspur Ynan 1.0 o Gopher @ AlphaCode
W bepr@ T0 = /1 1-12 G GLaM @ Chinchilla
" \
) e g!@ PanGu-I
Ernie 3.0 Titan Gb" 2022 ~ HUAWEI
InstructGPT \ J UL2 @ Sparrow
2~ -~ ~~
orNeox 208 [C) < G Grarn Gom
L1
/ LY
mT0 (% CodeGen ThInstruet Al2_~, % -/ (5 Panpav & ERNIE Bot
-~ ciMm (B8 OPT OO 7-10 ~—e_ 00 LLaMA
BLOOMZ ' N / 12 r
e] ~
Galatica 00 AlexaT™M @) / \ B>
OPT-IML (X) ChatGPT GPT-4

Fig. 1. A timeline of existing large language models (having a size larger than 10B) in recent years. We mark the open-source LLMs in yellow color.

Kashu Yamazaki, 2024

SayCan (1/3)

With prompt engineering and scoring we can use LLM to break down an instruction into small, actionable
steps. However, the LLLM doesn't know about the scene, embodiment and the situation it's in. It needs

what is call an affordance function!

e A robotic value functions as a way to provide what's feasible in the world given the current scene and
embodiment.

e« LLM checks what makes sense to do next given the grand plan, and the value function checks what is
currently feasible

Kashu Yamazaki, 2024

SayCan (2/3)

SayCan [12] obtains a skill that is both
possible and useful with LLMs by:

 asking the LLM to interpret an instruction
and score the likelihood that an individual
skill makes progress towards completing the
high-level instruction.

e a value function that represents the
probability of successfully executing said
skill to select the skill to perform

Kashu Yamazaki, 2024

Instruction Relevance with LLMs

How would you put

an apple on the -30
table? 230
4

I would: 1.
- -30
-5
-30
LLM -10

-20

I would: 1. Find an apple, 2.

Combined

Find an apple
Find a coke
Find a sponge
Pick up the apple
Pick up the coke

Place the apple
Place the coke
Go to the table

Go to the counter

Task Affordances with Value Functions

0.6
0.6
0.6
0.2
0.2

0.1

0.1 Value
0.8 Functions
0.8

y

;.HN{ >I

https://say-can.github.io/

SayCan (3/3)

Human: | spilled
my coke, can you
bring me
something to clean
it up?

Robot: | would
1. Find a sponge
2. Pick up the
sponge

3. Bring it to you
4. Done

Language x Affordance
: Combined Score

Kashu Yamazaki, 2024

find a sponge

1.00
go to the table

0.08

find a coke can

0:08

go to the trash can

005

find a water bottle

0.01

pick up the sponge

1.00

put down the sponge

0.11
bring it to you

0104
go to the table

0.00

go to the trash can

0.00

bring it to you

1.00

put down the sponge

0.47
go to the table

0.21

go to the trash can

0.00

done

0.00

done

1.00

go to the table

0.01

find a coke can

0.00

find a sponge

0.00

go to the trash can

0.00

PaLM-SayCan

Just by changing the LLM to a more performant PaLM we
got:

e better performance
e chain-of-thought prompting

 handling of queries in other languages

Kashu Yamazaki, 2024

Planning Performance

100%

75%

50%

25%

0%

10

@ FLAN-SayCan @ PALM-SayCan

50 100

Model Size (B)

500

Inner Monologue (1/3)

Inner Monologue [1#] bring in VLMs to
provide feedback about the scene, task success

etc.
All these different models talk to each other in

natural language so that LLM can understand.

66 VLMs bring a lot of non-robotic data into
our system allowing us to get better planning

feedback mechanisms.

Kashu Yamazaki, 2024

Robot Planning & Interaction

Humani

@ Can you brin

g me the drink from the table?

Robot

Action: "go to table” @

Robot
Do you want water or coke? @

Rabot
Action: "pick up the coke” @

Robaot

Action: "pick up the coke” @

Raobot
Action: "bring it to you® @

Grounded Closed-Loop Feedback

Robot

Zoene Desoriptor @ — Success Detector
& @
@

Human

Scens Descripbor

' .
@ | see: coke, water, chocolate bar.

e

Swccess Detector
@ Action was not successful.
Success Detector

m
@ Action was successful.

Robot Environments

https://innermonologue.github.io/

Inner Monologue (2/3)

e Success Detection gives task-specific task completion information.
» Passive Scene Description gives structured semantic scene information at every planning step.

e Active Scene Description gives unstructured semantic information only when queried by the LLM
planner.

Success Detection in context Paszive Scena Description in context: Active Scene Description in context:
Robot Action: Pick up coke Robot Action: Go to table Robot Action: Go to drawers
Success: True Scene: lime soda, coke, anargy bar Robot Ask: Is the drawer open?
Robot Action: Bring it to user Robot Action: pick up energy bar Human: The drawer is closed.

Robot Action: Open the drawer

Kashu Yamazaki, 2024

Inner Monologue (3/3)

Kashu Yamazaki, 2024

Hurman: move all the blocks into mismatching bowls.
Scane: Thera is a yellow block, yellow bowl, blue
block, blue bowd, red block, red bowl.

Robot: My goal is [yellow block in blue bow!', ‘red
block in yellow bowl, ‘blue block in red bowl].
Robot: Pick up vellow block and place it in blue bowl.
Scene: You achieved ['yvellow block in blua bowl’
Robot: | need red block in yellow bowd, blue block in
red bowl

Robot: Pick up red block and place it in yellow bowl.

Tabletop
Rearrangement (Sim)

Human: Sort fruits and condiments in different plates
Scene: objects = [apple, egg. plum, pizza, cookie, salt,
mustard, ketchup, lemon]

Scene: occluded objects = (]

Robot: robot.pickplace({strawberry, green plate)
Robot: robot.pickplace{salt shaker, blue plate)
Success Detector: False.

Robot: robot.pickplace(salt shaker, blue plate)

Tabletop
Rearrangement (Real)

Robot: robot.stopl)

Hurman: Bring me a drink from the table
Robot: go to the table

Scene: | see a coke and lime soda
Robot: What kind of drink would you like?
Hurnan: Something with caffeine
Robot: Pick up coke

Success Detector: False

Robot: Pick up coke

Robot: Bring it to you

Robot: Put down the coke

Robot: Done

Kitchen Mobile
Manipulation (Real)

Object Recognition

Action: put
the yellow
black on
the blue
bl

Task-Progress
Scana Description

Success Detection

Action: put
tha agg on
tha blua plate

Object Recognition

(w Potential Occlusion)

Object Recognition

Success Detection

Action: ;I\:u up chacolate bar
pick up
the coke Pick up coke
1
. 34 -
5 Pick upwater
u
Cpen orovesr
L3
Success Detection Affordance Grounding

Code as Policies

Code as Policies [1 1] used LLMs to generate code to directly control the robot.

Kashu Yamazaki, 2024

User

Large <=--- Stack the blocks on the empty bowl. (8)
Language =

Model APls
Control APIs
[Ex|

l Policy Code

block_names = detect_objects("blocks")
bowl_names = detect_objects("bowls")
for bowl_name in bowl_names:
if is_empty(bowl_name):

empty_bowl = bowl_name

break
objs_to_stack = [empty_bowl] |+ block_names
stack_objects(objs_to_stack)

l def is_empty(name):

def stack_objects(obj_names):
n_objs = len(obj_names) ;
for i in range(n_objs - 1): =
obj_names[i + 1]
obj_names[i]
(obj@, obj1)

https://code-as-policies.github.io/

DIAL

DAIL [1 1] show that VLMs can significantly expand language labels without collecting any additional robot

data.

Kashu Yamazaki, 2024

Step 1: Learn Scoring Model
Collect natural language description
for a small dataset and fine-tune a
VLM (e.g. CLIP)

Dataset A (small)
Final

Initial

O

Step 2: Relabel
Relabel the instructions in a larger
dataset using the VLM

(large)
Final

Initial

1
‘ ! ' Text |
. T “Pick up a coke can "Enc 1"
‘ : from the table” : :
1

Crowd-sourced
Description (Dataset A)

Relabeled instructions

Step 3: Train

Train a language conditioned
policy using behavior cloning
with original and relabeled

dataset

Dataset A (large)
(small)

@@

Dataset C
(relabeled B)

~——————

J

Move the object to
the right side

[0))
w

https://instructionaugmentation.github.io/

NLMap (1/4)

NLMap [1 1] showed VLMs can be used to query objects in the scene and allow for open-vocabulary queries

in SayCan. NLMap addresses two core problems:

1. How to maintain open-vocabulary scene representations that are capable of locating arbitrary objects?

2. How to merge such representations within long-horizon LLM planners to imbue them with scene
understanding?

Region Proposal + VLM Feature Open-vocabulary
+ Multiview Fusion Queryable Representation

Scene Exploration

“trash can”
T

“recycle bin”

“coke” “plant” =
“red can” “potted plant” |
“green plant” m

Kashu Yamazaki, 2024

http://nlmap-saycan.github.io/

“Recycle the coke can”

NLMap (2/4)

“coke can®, "recycle bin”
NLMap builds a natural language queryable

“coke can” found at(x1, y1)
“recycle bin” found at (x2, y2)

scene representation with VLMs. An LLM-

based object proposal module infers involved
“go to coke can”, “pick up coke can”,
“put down coke can”,

objects to query the representation for object

find the cole can

Eeck i He colon car

availability and location. LLM planner

Scene: coke can, recycle bin

Robot: | should N | B

111 1. find the coke can P
(SayCan) then plans conditioned on such ke "
information. T Bap e Y T —

300

4. put down coke can

Kashu Yamazaki, 2024

NLMap (3/4)

Natural Language Queryable Scene Representation:

1. The agent explores the scene and provides a class-agnostic bounding box proposal based on objectness.

2. Extract 512d CLIP features and 512d ViLD features of each bounding box and represent them as a feature
point cloud C = (¢;,Di,7:);—1_n-

3. When queried with a piece of text, visualize the heatmap of matches based on the alignment of text and
visual features.

Context elements{(Diy Pis Ty) Query: napkin box Query: tap Query: apple Query: fruit

=== S

Kashu Yamazaki, 2024

NLMap (4/4)

To complete a task specified by human instruction, the
robot will query the scene representation for relevant

information.

1. parsing natural language instruction into a list of
relevant object names

2. using the names as keys to query object locations
and availability.

3. generating executable options based on what’s
found in the scene, then plan and execute as
instructed.

Kashu Yamazaki, 2024

Input: instruction
if is_new_scene():
construct queryable scene representation
rgbd_images = robot.scene_explore()
bboxes = roi_proposal (rgbd_images)
positions, sizes = extract_3d(rgbd_images, bboxes)
phi = VIM.encode_ image (rgbd_images, bboxes)
nl_map = Context (phi, positicns, sizes)
save_nl _map (nl_map)
else:
nl_map = load_nl map()
extract relevant objects wvia LLM
objects = LIM.object_proposal (instruction)
extract text features
queries = VLM.encode_text (obhjects)
query the nl map
object_scores = queries.dot_product (nl _map.Phi)
object_presence, locations
= multiview fusion(object_scores, nl_map)
scene_obijects = objects.filter by (ockbject_presence)
planning with scene obijects information
LIM.plan{instruction, scene_objects)

CLIP-Nav (1/3)

CLIP-Nav [1 1] examines CLIP’s capability in making sequential navigational decisions, and study how it

influences the path that an agent takes.

1. Instruction Breakdown: Decompose coarse-grained instructions into keyphrases using LL.Ms.
2. Vision-Language Grounding: Ground keyphrases in the environment using CLIP.

3. Zero-Shot Navigation: Utilize the CLIP scores to make navigational decisions.

Kashu Yamazaki, 2024

https://arxiv.org/pdf/2211.16649.pdf

CLIP-Nav (2/3)

CLIP-chosen image

Navigational |
Component (NC) : Activity Component (AC)
“Go to the > Keyphrase Grounding “Spoon next to
kitchen” m Score (KGS) { | the microwave” > Stop Condition
|

e Ground the NC on all the split images to obtain Keyphrase Grounding Scores (KGS). The CLIP-chosen image
represents the one with the highest KGS, which drives the navigation algorithms.

e Ground the AC and use the grounding score to determine if the agent has reached the target location (stop

condition).

Kashu Yamazaki, 2024

CLIP-Nav (3/3)

At e ach time step: Current r\::avrgat:onaf Compo:aent (NC)) Activity Component (AC))
Go to the bedroom replace towels on the towel rack

1. split the panorama into 4 images, and obtain the Current
CLIP-chosen image

2. obtain adjacent navigable nodes visible from this
image using the Matterport Simulator, and choose

Navigable
¥ Nodes

the closest node.

Next
This is done iteratively till the Stop Condition is reached. Node

Kashu Yamazaki, 2024

