Source code for qualia2.data.mnist

# -*- coding: utf-8 -*- 
from .. import to_cpu
from ..core import *
from .dataset import *
from .transforms import Compose, ToTensor, Normalize
import matplotlib.pyplot as plt
import gzip

[docs]class MNIST(Dataset): '''MNIST Dataset\n Args: normalize (bool): If true, the intensity value of a specific pixel in a specific image will be rescaled from [0, 255] to [0, 1]. Default: True flatten (bool): If true, data will have a shape of [N, 28*28]. Default: False Shape: - data: [N, 1, 28, 28] ''' def __init__(self, train=True, transforms=Compose([ToTensor(), Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])]), target_transforms=None): super().__init__(train, transforms, target_transforms) def __len__(self): if self.train: return 60000 else: return 10000
[docs] def state_dict(self): return { 'label_map': {0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9'} }
[docs] def prepare(self): url = 'http://yann.lecun.com/exdb/mnist/' files = { 'train_data.gz':'train-images-idx3-ubyte.gz', 'train_labels.gz':'train-labels-idx1-ubyte.gz', 'test_data.gz':'t10k-images-idx3-ubyte.gz', 'test_labels.gz':'t10k-labels-idx1-ubyte.gz' } for filename, value in files.items(): self._download(url+value, filename) if self.train: data_path = self.root+'/train_data.gz' label_path = self.root+'/train_labels.gz' else: data_path = self.root+'/test_data.gz' label_path = self.root+'/test_labels.gz' self.data = self._load_data(data_path) self.label = MNIST.to_one_hot(self._load_label(label_path), 10)
def _load_data(self, filename): with gzip.open(filename, 'rb') as file: if gpu: import numpy data = np.asarray(numpy.frombuffer(file.read(), np.uint8, offset=16)) else: data = np.frombuffer(file.read(), np.uint8, offset=16) return data.reshape(-1,1,28,28) def _load_label(self, filename): with gzip.open(filename, 'rb') as file: if gpu: import numpy labels = np.asarray(numpy.frombuffer(file.read(), np.uint8, offset=8)) else: labels = np.frombuffer(file.read(), np.uint8, offset=8) return labels
[docs] def show(self, row=10, col=10): H, W = 28, 28 img = np.zeros((H*row, W*col)) for r in range(row): for c in range(col): img[r*H:(r+1)*H, c*W:(c+1)*W] = self.data[random.randint(0, len(self.data)-1)].reshape(H,W) plt.imshow(to_cpu(img), cmap='gray', interpolation='nearest') plt.axis('off') plt.show()