Source code for qualia2.rl.envs.box2d

# -*- coding: utf-8 -*- 
from ..core import Env, Tensor

[docs]class BipedalWalker(Env): '''BipedalWalker \n Get a 2D biped walker to walk through rough terrain. Observation: Type: Box(24) Num Observation Min Max Mean 0 hull_angle 0 2*pi 0.5 1 hull_angularVelocity -inf +inf - 2 vel_x -1 +1 - 3 vel_y -1 +1 - 4 hip_joint_1_angle -inf +inf - 5 hip_joint_1_speed -inf +inf - 6 knee_joint_1_angle -inf +inf - 7 knee_joint_1_speed -inf +inf - 8 leg_1_ground_contact_flag 0 1 - 9 hip_joint_2_angle -inf +inf - 10 hip_joint_2_speed -inf +inf - 11 knee_joint_2_angle -inf +inf - 12 knee_joint_2_speed -inf +inf - 13 leg_2_ground_contact_flag 0 1 - 14-23 10 lidar readings -inf +inf - Actions: Type: Box(4) - Torque control(default) Num Name Min Max 0 Hip_1 (Torque / Velocity) -1 +1 1 Knee_1 (Torque / Velocity) -1 +1 2 Hip_2 (Torque / Velocity) -1 +1 3 Knee_2 (Torque / Velocity) -1 +1 Rewards: Reward is given for moving forward, total 300+ points up to the far end. If the robot falls, it gets -100. Applying motor torque costs a small amount of points, more optimal agent will get better score. Reference: https://github.com/openai/gym/wiki/BipedalWalker-v2 ''' def __init__(self): super().__init__('BipedalWalker-v2')
[docs]class BipedalWalkerHardcore(Env): '''BipedalWalker \n Get a 2D biped walker to walk through rough terrain. Observation: Type: Box(24) Num Observation Min Max Mean 0 hull_angle 0 2*pi 0.5 1 hull_angularVelocity -inf +inf - 2 vel_x -1 +1 - 3 vel_y -1 +1 - 4 hip_joint_1_angle -inf +inf - 5 hip_joint_1_speed -inf +inf - 6 knee_joint_1_angle -inf +inf - 7 knee_joint_1_speed -inf +inf - 8 leg_1_ground_contact_flag 0 1 - 9 hip_joint_2_angle -inf +inf - 10 hip_joint_2_speed -inf +inf - 11 knee_joint_2_angle -inf +inf - 12 knee_joint_2_speed -inf +inf - 13 leg_2_ground_contact_flag 0 1 - 14-23 10 lidar readings -inf +inf - Actions: Type: Box(4) - Torque control(default) Num Name Min Max 0 Hip_1 (Torque / Velocity) -1 +1 1 Knee_1 (Torque / Velocity) -1 +1 2 Hip_2 (Torque / Velocity) -1 +1 3 Knee_2 (Torque / Velocity) -1 +1 Rewards: Reward is given for moving forward, total 300+ points up to the far end. If the robot falls, it gets -100. Applying motor torque costs a small amount of points, more optimal agent will get better score. Reference: https://github.com/openai/gym/wiki/BipedalWalker-v2 ''' def __init__(self): super().__init__('BipedalWalkerHardcore-v2')
[docs]class LunarLander(Env): ''' LunarLander \n Observation: Type: Box(8) Actions: Type: Discrete(4) ''' def __init__(self): super().__init__('LunarLander-v2')
[docs]class LunarLanderContinuous(Env): ''' LunarLanderContinuous \n Observation: Type: Box(8) Actions: Type: Box(2) ''' def __init__(self): super().__init__('LunarLanderContinuous-v2')
[docs]class CarRacing(Env): ''' CarRacing \n Observation: Type: Box(96,96,3) ''' def __init__(self): super().__init__('CarRacing-v0')