qualia2.vision package¶
Submodules¶
qualia2.vision.alexnet module¶
-
class
qualia2.vision.alexnet.AlexNet(pretrained=False)[source]¶ Bases:
qualia2.nn.modules.module.Module- Args:
pretrained (bool): if true, load a pretrained weights
qualia2.vision.densenet module¶
-
class
qualia2.vision.densenet.DenseBlock(num_layers, num_input_features, bn_size, growth_rate, drop_rate)[source]¶
-
class
qualia2.vision.densenet.DenseLayer(num_input_features, growth_rate, bn_size, drop_rate)[source]¶
-
class
qualia2.vision.densenet.DenseNet(growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000, pretrained=False)[source]¶ Bases:
qualia2.nn.modules.module.ModuleDensely Connected Convolutional Networks Args:
growth_rate (int): how many filters to add each layer (k in paper) block_config (list of 4 ints): how many layers in each pooling block num_init_features (int): the number of filters to learn in the first convolution layer bn_size (int): multiplicative factor for number of bottle neck layers (i.e. bn_size * k features in the bottleneck layer) drop_rate (float): dropout rate after each dense layer num_classes (int): number of classification classes
-
qualia2.vision.densenet.DenseNet121(pretrained=False)¶
-
qualia2.vision.densenet.DenseNet161(pretrained=False)¶
-
qualia2.vision.densenet.DenseNet169(pretrained=False)¶
-
qualia2.vision.densenet.DenseNet201(pretrained=False)¶
qualia2.vision.imagenet_labels module¶
qualia2.vision.openpose module¶
qualia2.vision.resnet module¶
-
class
qualia2.vision.resnet.Basic(inplanes, planes, stride=1, downsample=None, base_width=64, dilation=1, norm_layer=<class 'qualia2.nn.modules.normalize.BatchNorm2d'>)[source]¶ Bases:
qualia2.nn.modules.module.Module-
expansion= 1¶
-
-
class
qualia2.vision.resnet.Bottleneck(inplanes, planes, stride=1, downsample=None, base_width=64, dilation=1, norm_layer=<class 'qualia2.nn.modules.normalize.BatchNorm2d'>)[source]¶ Bases:
qualia2.nn.modules.module.Module-
expansion= 4¶
-
-
class
qualia2.vision.resnet.ResNet(block, layers, num_classes=1000, zero_init_residual=False, replace_stride_with_dilation=[False, False, False], norm_layer=<class 'qualia2.nn.modules.normalize.BatchNorm2d'>, pretrained=False)[source]¶ Bases:
qualia2.nn.modules.module.ModuleArgs: block (Module): Basic Block to create layers layers (list of int): config of layers num_classes (int): size of output classes zero_init_residual (bool): Zero-initialize the last BN in each residual branch, so that the residual branch starts with zeros, and each residual block behaves like an identity.
This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
replace_stride_with_dilation (list of bool): each element in the list indicates if we should replace the 2x2 stride with a dilated convolution
-
qualia2.vision.resnet.ResNet101(pretrained=False)¶
-
qualia2.vision.resnet.ResNet152(pretrained=False)¶
-
qualia2.vision.resnet.ResNet18(pretrained=False)¶
-
qualia2.vision.resnet.ResNet34(pretrained=False)¶
-
qualia2.vision.resnet.ResNet50(pretrained=False)¶
qualia2.vision.squeezenet module¶
-
class
qualia2.vision.squeezenet.Fire(inplanes, squeeze_planes, expand1x1_planes, expand3x3_planes)[source]¶
qualia2.vision.transforms module¶
-
class
qualia2.vision.transforms.CenterCrop(size)[source]¶ Bases:
objectCrops the given PIL Image at the center. Args:
size (int): Desired output size of the crop.
-
class
qualia2.vision.transforms.Compose(transforms)[source]¶ Bases:
objectComposes several transforms together. Args:
transforms (list): list of transforms
-
class
qualia2.vision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])[source]¶ Bases:
objectNormalize a tensor image with mean and standard deviation.
qualia2.vision.vgg module¶
-
class
qualia2.vision.vgg.VGG(ver, pretrained=False, batch_norm=False)[source]¶ Bases:
qualia2.nn.modules.module.ModuleBase class of VGG
- Args:
features (Module): feanture Module cfg (int): model config pretrained (bool): if true, load a pretrained weights
-
qualia2.vision.vgg.VGG11(pretrained=False)¶
-
qualia2.vision.vgg.VGG11_bn(pretrained=False)¶
-
qualia2.vision.vgg.VGG13(pretrained=False)¶
-
qualia2.vision.vgg.VGG13_bn(pretrained=False)¶
-
qualia2.vision.vgg.VGG16(pretrained=False)¶
-
qualia2.vision.vgg.VGG16_bn(pretrained=False)¶
-
qualia2.vision.vgg.VGG19(pretrained=False)¶
-
qualia2.vision.vgg.VGG19_bn(pretrained=False)¶