qualia2.vision package¶
Submodules¶
qualia2.vision.alexnet module¶
-
class
qualia2.vision.alexnet.
AlexNet
(pretrained=False)[source]¶ Bases:
qualia2.nn.modules.module.Module
- Args:
pretrained (bool): if true, load a pretrained weights
qualia2.vision.densenet module¶
-
class
qualia2.vision.densenet.
DenseBlock
(num_layers, num_input_features, bn_size, growth_rate, drop_rate)[source]¶
-
class
qualia2.vision.densenet.
DenseLayer
(num_input_features, growth_rate, bn_size, drop_rate)[source]¶
-
class
qualia2.vision.densenet.
DenseNet
(growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000, pretrained=False)[source]¶ Bases:
qualia2.nn.modules.module.Module
Densely Connected Convolutional Networks Args:
growth_rate (int): how many filters to add each layer (k in paper) block_config (list of 4 ints): how many layers in each pooling block num_init_features (int): the number of filters to learn in the first convolution layer bn_size (int): multiplicative factor for number of bottle neck layers (i.e. bn_size * k features in the bottleneck layer) drop_rate (float): dropout rate after each dense layer num_classes (int): number of classification classes
-
qualia2.vision.densenet.
DenseNet121
(pretrained=False)¶
-
qualia2.vision.densenet.
DenseNet161
(pretrained=False)¶
-
qualia2.vision.densenet.
DenseNet169
(pretrained=False)¶
-
qualia2.vision.densenet.
DenseNet201
(pretrained=False)¶
qualia2.vision.imagenet_labels module¶
qualia2.vision.openpose module¶
qualia2.vision.resnet module¶
-
class
qualia2.vision.resnet.
Basic
(inplanes, planes, stride=1, downsample=None, base_width=64, dilation=1, norm_layer=<class 'qualia2.nn.modules.normalize.BatchNorm2d'>)[source]¶ Bases:
qualia2.nn.modules.module.Module
-
expansion
= 1¶
-
-
class
qualia2.vision.resnet.
Bottleneck
(inplanes, planes, stride=1, downsample=None, base_width=64, dilation=1, norm_layer=<class 'qualia2.nn.modules.normalize.BatchNorm2d'>)[source]¶ Bases:
qualia2.nn.modules.module.Module
-
expansion
= 4¶
-
-
class
qualia2.vision.resnet.
ResNet
(block, layers, num_classes=1000, zero_init_residual=False, replace_stride_with_dilation=[False, False, False], norm_layer=<class 'qualia2.nn.modules.normalize.BatchNorm2d'>, pretrained=False)[source]¶ Bases:
qualia2.nn.modules.module.Module
Args: block (Module): Basic Block to create layers layers (list of int): config of layers num_classes (int): size of output classes zero_init_residual (bool): Zero-initialize the last BN in each residual branch, so that the residual branch starts with zeros, and each residual block behaves like an identity.
This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
replace_stride_with_dilation (list of bool): each element in the list indicates if we should replace the 2x2 stride with a dilated convolution
-
qualia2.vision.resnet.
ResNet101
(pretrained=False)¶
-
qualia2.vision.resnet.
ResNet152
(pretrained=False)¶
-
qualia2.vision.resnet.
ResNet18
(pretrained=False)¶
-
qualia2.vision.resnet.
ResNet34
(pretrained=False)¶
-
qualia2.vision.resnet.
ResNet50
(pretrained=False)¶
qualia2.vision.squeezenet module¶
-
class
qualia2.vision.squeezenet.
Fire
(inplanes, squeeze_planes, expand1x1_planes, expand3x3_planes)[source]¶
qualia2.vision.transforms module¶
-
class
qualia2.vision.transforms.
CenterCrop
(size)[source]¶ Bases:
object
Crops the given PIL Image at the center. Args:
size (int): Desired output size of the crop.
-
class
qualia2.vision.transforms.
Compose
(transforms)[source]¶ Bases:
object
Composes several transforms together. Args:
transforms (list): list of transforms
-
class
qualia2.vision.transforms.
Normalize
(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])[source]¶ Bases:
object
Normalize a tensor image with mean and standard deviation.
qualia2.vision.vgg module¶
-
class
qualia2.vision.vgg.
VGG
(ver, pretrained=False, batch_norm=False)[source]¶ Bases:
qualia2.nn.modules.module.Module
Base class of VGG
- Args:
features (Module): feanture Module cfg (int): model config pretrained (bool): if true, load a pretrained weights
-
qualia2.vision.vgg.
VGG11
(pretrained=False)¶
-
qualia2.vision.vgg.
VGG11_bn
(pretrained=False)¶
-
qualia2.vision.vgg.
VGG13
(pretrained=False)¶
-
qualia2.vision.vgg.
VGG13_bn
(pretrained=False)¶
-
qualia2.vision.vgg.
VGG16
(pretrained=False)¶
-
qualia2.vision.vgg.
VGG16_bn
(pretrained=False)¶
-
qualia2.vision.vgg.
VGG19
(pretrained=False)¶
-
qualia2.vision.vgg.
VGG19_bn
(pretrained=False)¶